BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA

IN THE MATTER OF THE APPLICATION OF SAN DIEGO GAS & ELECTRIC COMPANY (U902M) FOR APPROVAL OF ITS ENERGY STORAGE PROCUREMENT FRAMEWORK AND PROGRAM AS REQUIRED BY DECISION 13-10-040.

AND RELATED MATTERS.

Application 14-02-006 (Filed February 28, 2014)
Application 14-02-007
Application 14-02-009

RESPONSE OF THE CALIFORNIA HYDROGEN BUSINESS COUNCIL TO THE SCOPING MEMO AND RULING OF THE APPLICATION OF SAN DIEGO GAS & ELECTRIC COMPANY (U902M) FOR APPROVAL OF ITS ENERGY STORAGE PROCUREMENT FRAMEWORK AND PROGRAM AS REQUIRED BY DECISION 13-10-040 AND RELATED MATTERS

JEFFREY A. SERFASS
Managing Director
CALIFORNIA HYDROGEN BUSINESS COUNCIL
3438 Merrimac Road
Los Angeles, CA 90049
Telephone: 310-455-6095
Facsimile: 202-223-5537
Email: jserfass@californiahydrogen.org

June 12, 2014
BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA

IN THE MATTER OF THE APPLICATION OF SAN DIEGO GAS & ELECTRIC COMPANY (U902M) FOR APPROVAL OF ITS ENERGY STORAGE PROCUREMENT FRAMEWORK AND PROGRAM AS REQUIRED BY DECISION 13-10-040.

― APPLICATIONS 14-02-006 (Filed February 28, 2014)
 14-02-007
 14-02-009

AND RELATED MATTERS.

“RESPONSE OF THE CALIFORNIA HYDROGEN BUSINESS COUNCIL TO THE SCOPING MEMO AND RULING OF THE APPLICATION OF SAN DIEGO GAS & ELECTRIC COMPANY (U902M) FOR APPROVAL OF ITS ENERGY STORAGE PROCUREMENT FRAMEWORK AND PROGRAM AS REQUIRED BY DECISION 13-10-040 AND RELATED MATTERS”

Considering the significant market opportunity for energy storage technology in California, the members of the CHBC are concerned that CPUC staff is inadvertently limiting the technology options for energy storage, thus reducing pathways for utilities and ratepayers to utilize some of the most cost-

effective and versatile technology options currently commercially available, particularly with regard to bulk storage.

1. CHBC would like to point out that the discussion document makes no reference to energy storage systems (a system capable of storing energy through electrical, mechanical, chemical or thermal processes for use at a later time) that store energy for use in a form other than grid electricity, while both electricity transmission and distribution grids are mentioned several times. For example, there is no reference made to the natural gas grid. The CHBC suggests allowing energy storage options that go beyond the standard grid-storage-grid model.

Therefore, the CHBC recommends that in:

Section 5.2 (4) An “energy storage system” shall do one or more of the following:

(A) Use mechanical, chemical, or thermal processes to store energy that was generated at one time for use at a later time

of the phrase “for use at a later time” be interpreted to mean use either on the electricity grid, the natural gas grid, for transportation fuels, or other energy uses.

2. Section 5.2 (4) 1.a Q2 – Interpretation of “generated”: The CHBC considers that any of the three options would permit Hydrogen Energy Storage. However, we encourage including in the examples of the narrowest definition (iii. electrical energy only from the grid) be expanded to include electrolysis from the grid.

3. Section 5.2 (4) 1.b. Q3 - The CHBC is confident that the broad interpretation of ‘use’ suggests that the stored energy is ‘used to enable any useful activity or function’ includes alternative approaches, like Power-to-Gas, but a clearer definition would create certainty.

4. Section 5.2 (4) 1.b. Q4 – Interpretation of “use”: The CHBC advocates the “broad interpretation” here (any activity) which includes for example, controlled charging/fueling of any electric vehicles, (including hydrogen fuel cell electric vehicles) from the grid, but the stored energy is used off the grid for transportation.
Also, under the “narrow” interpretation, dispatchable load with storage, such as electrolyzers with hydrogen storage, absorb energy from the grid and impact the later state of the grid by shifting load to match grid requirements.

5. Finally, while the basic definitions of energy storage system do not appear to exclude Hydrogen Energy Storage or Power-to-Gas, none of the use cases include hydrogen. The CHBC strongly recommend that Hydrogen Energy Storage be included in the use cases specified in **Table 1: Broad Interpretations** with specific applications for use of:

a. Hydrogen as Fuel Cell Electric Vehicle fueling
b. Biogas methanation for renewable natural gas
c. Direct injection into the natural gas grid
d. Fueling fuel cells for power generation
e. Electrolysis to hydrogen to storage to grid electricity
f. Hydrogen feedstock for refining

that would qualify under the CHBC’s recommended definitions for Q2 and Q4.

The CHBC appreciates the opportunity to provide feedback to the CPUC’s discussion document and looks forward to work with CPUC on enabling all energy storage technologies to compete in California.

Best regards,

Jeff Serfass
Managing Director
California Hydrogen Business Council