

CHBC BRIEFING: HYDROGEN RAIL PROJECT SHOWCASE

MAY 19, 2021

WEBINAR SPEAKERS

Cory Shumaker Development Specialist California Hydrogen Business Council Lynn Harris Senior Consultant -Sustainable Motive Power & Zero-Emission Technologies DB Engineering and Consulting USA

Tim Sasseen Market Development Manager, US Ballard Power Systems Carrie Schindler Director of Transit and Rail San Bernardino County Transportation Authority Mike Hart CEO Sierra Railroad / Sierra Energy Momoko Tamaoki Office Chief, Equipment and Assets Caltrans

BRIEFING SERIES TITLE SPONSOR

PROGRAM SPONSORS

HOUSEKEEPING

- Two Audio Options: Streaming Audio and Dial-In.
 - Streaming Audio/Computer Speakers (Default)
 - Dial-In: Use the Audio Panel (right side of screen) to see dial-in instructions. Call-in separately with your telephone.
- Question & Answers
 - Ask questions using the **Questions Panel** on the right side of your screen.
- Recording & Slides
 - The recording of the webinar and the slides will be available after the event. Registrants will be notified by email.
- Troubleshooting
 - Contact Peter Thompson | <u>pthompson@californiahydrogen.org</u>

File View Help	_05×
- Audio	
 Telephone 	
O Mic & Speakers	
Accessered and Audro PIN: 24	
Questions	5
	1
[Enter a question for staff]	
[Enter a question for staff]	Send
[Enter a question for staff] Webinar Now Webinar ID: 664-973	(m. 1

• Our Vision:

- CHBC is committed to advancing the commercialization of hydrogen in the energy and transportation sectors to achieve California's climate, air quality, and decarbonization goals.
- Our Mission:
 - Provide clear value to our members and serve as an indispensable and leading voice in promoting the use of hydrogen in the utility and transportation sectors in California and beyond.

Our Principals:

- Leadership, Integrity, Teamwork and Inclusion.
- Our Objectives:
 - Enhance market commercialization through effective advocacy and education of policymakers and policy influencers
 - Be "the" trusted "go to" resource on Hydrogen and Fuel Cell technology for policymakers and policy influencers
 - Accelerate market growth via networking opportunities and information exchange for the industry and its customers

OUR MEMBERS

Platinum

VALUE IN MEMBERSHIP

- Active representation in all relevant California policy making venues
- A trusted and knowledgeable industry resource
- Access to policymakers, policy influencers and industry
- Track record of success
- Platform for industry collaboration
- Learn more: <u>www.californiahydrogen.org</u>

BECOME A MEMBER AND MAKE A DIFFERENCE TOGETHER WE CAN INFLUENCE PUBLIC POLICY AND GROW YOUR BOTTOM LINE

NEXT UP:

Lynn Harris Senior Consultant - Sustainable Motive Power & Zero-Emission Technologies DB Engineering and Consulting USA

Hydrogen Business Council Current Global Landscape of Motivations Behind Hydrogen and Fuel Cells for Rail Applications

Lynn Harris | DB Engineering & Consulting USA Inc. | Lynn.harris@deutschebahn.com | May 19, 2021

DB DB Group Deutsche Bahn

Around **13 million** passengers a day on trains and buses in Germany and Europe

On weekdays over **1 million**

metric tons of goods

by rail in Germany and Europe

320,000 employees

worldwide

On **33,400 kilometers** more than **25,000 bridges** and **740 tunnels** in the railway network of the DB

23,000 trains a day

Around 7,600 locomotives and multiple units

5,700 stations

in Germany

more than

all the little state of the

more than

26,000 buses worldwide

worldwide

74 maintenance facilities

in Germany

DB Engineering & Consulting USA leverages the expertise of the world's largest integrated transportation **Operator,** improving the quality of life in the U.S. by **introducing** sustainable mobility solutions

Vehicle design, modification and construction

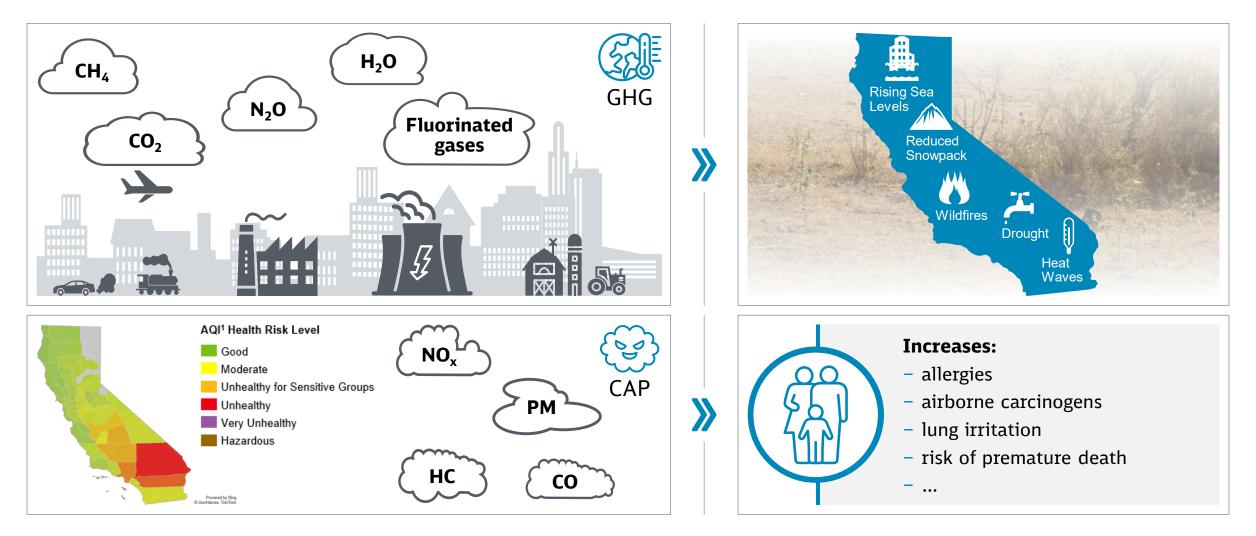
Technoeconomic analysis

Well to wheel energy and emission assessment

Concept, implementation and operation

Sustainable Motive Power & Zero-Emission Technologies

Pilot projects /

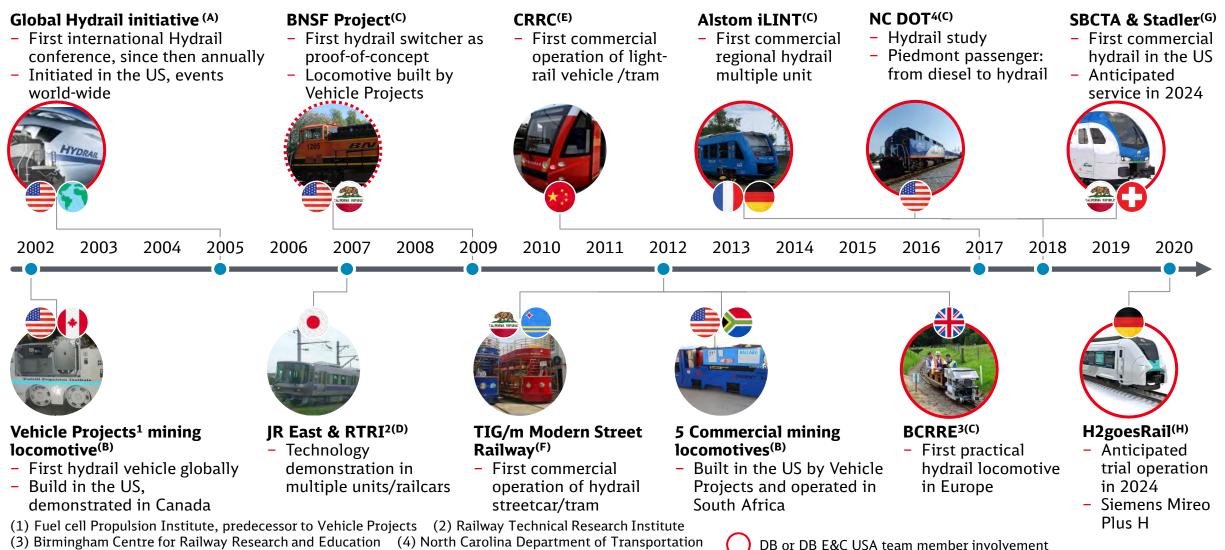

prototyping

ZE strategy consulting

Technology Road Map / Transition Strategies

Infrastructure design, modification and construction

Greenhouse gases (GHG) contribute to climate change and criteria air pollutants (CAP) pose a high risk to people's health


(1) 90th Percentile AQI1 per county, 2019

DB Engineering & Consulting USA, Inc. | May 2021

DB

History of hydrail A selection of milestones

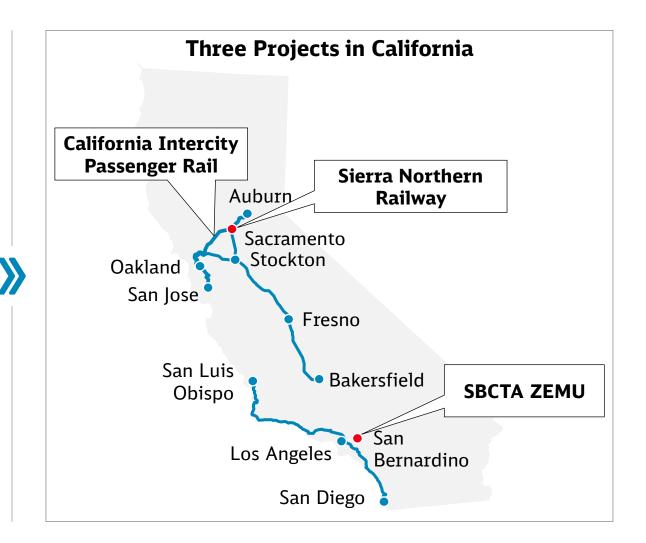

Fuel cell Propulsion Institute, predecessor to Vehicle Projects (2) Railway Technical Research Institute
 Birmingham Centre for Railway Research and Education (4) North Carolina Department of Transportation
 Illustration Source: (A) Global Hydrail Initiative, (B) Vehicle Projects, (C) Andreas Hoffrichter, (D) RTRI,
 XinhuaNet, (F) TIG/m, (G) SBCTA, (H) H2goesRail

DB Engineering & Consulting USA, Inc. | May 2021

DB E&C USA team member emission assessment contributions

Current Worldwide Hydrail Projects

California is the leader in hydrail efforts in North America with three large ongoing projects



CA regulations

- Off-road vehicles, including rail, are required to be ZE¹ by 2035 according to EO N-79-20
- CARB proposes a spending account for rail emission
- Overall CA targets to reduce GHG by 80%² by 2050, carbon neutral by 2045
- Significant hydrogen efforts for other transportation modes and power generation in CA

On going hydrail projects in CA:

- Caltrans plans to transition their fleet to hydrail
- San Bernardino County Transportation Authority (SBCTA) has ordered the first commercial hydrail vehicle in the country
- Sierra Northern Railway is rebuilding a switcher to hydrogen power

⁽¹⁾ zero-emission

⁽²⁾ compared to 1990 levels

DB THANK YOU! If you have any questions, please feel free to reach out.

Lynn Harris

Zero-Emission Technologies

Lynn.Harris@deutschebahn.com

Sr. Consultant, Sustainable Motive Power &

+1 (916) 820-0128

LinkedIn: DB Engineering & Consulting USA Inc.

Website: https://db-engineering-consulting.com/en/

Andreas Hoffrichter, PhD

Lead, Sustainable Motive Power & Zero-Emission Technologies

Andreas.Hoffrichter@deutschebahn.com

+1 (916) 841-3947

LinkedIn: DB Engineering & Consulting USA Inc.

Website: https://db-engineering-consulting.com/en/

NEXT UP:

Tim Sasseen Market Development Manager, US Ballard Power Systems

Fuel Cell Innovators for Over 40 Years

An introduction to Ballard and our unique value proposition

Global decarbonization is putting the focus on hydrogen

The fight against climate change and air pollution is driving the demand for fuel cell technology that converts hydrogen in clean electricity

Hydrogen is a flexible energy carrier and fuel:

in cars, trucks, buses, trains and ships

in industry and for critical infrastructure

Hydrogen powered trains are poised to disrupt the rail industry

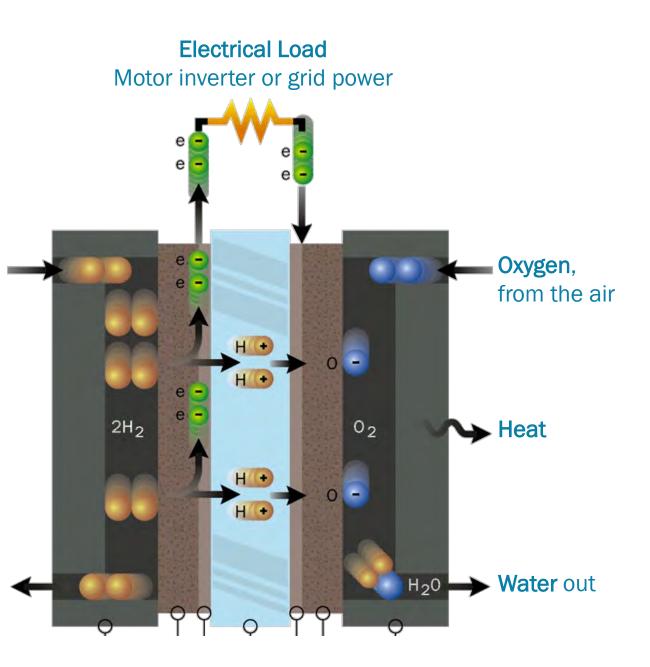
The environmental gains of electrification with performance and refueling time comparable to diesel

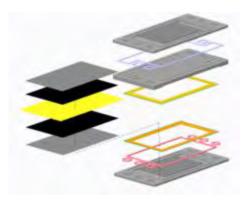
Long range and route flexibility

Short refueling time

Cost effective route electrification

Nearly any train route served by diesel trains can be served by a hydrail train


- Suitable applications include multiple units for regional passenger service and locomotives for shunting or freight.
- No requirement for overhead catenary infrastructure and power substations
- Enables gradual electrification (one train at the time) aligned with budget availability


A fuel cell acts like a battery cell, but you feed it hydrogen instead of charging

Hydrogen from water or renewable natural gas

We continuously invest in our technology and product development

Unit cell components MEA, bipolar plates Fuel cell stacks 14th generation Fuel cell modules 8th generation

Fuel cell vehicle integration application engineering/ after sales service

Humidified and pressurized system

Freeze-start from -25°C

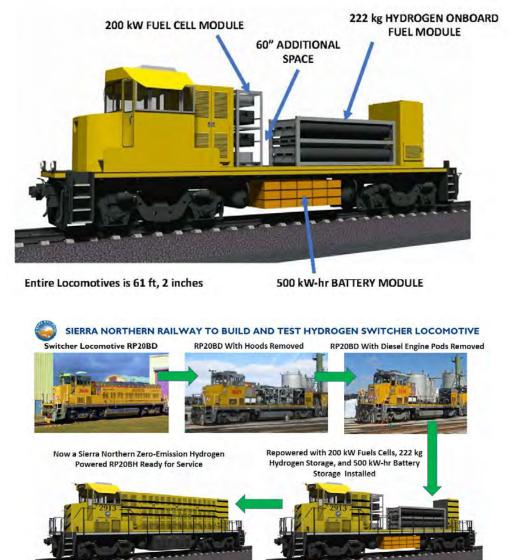
>30,000 hours life time

Case Study: Foshan Gaoming Modern Hydrogen Tram Line

- Agreement with CRRC Sifang to develop 5 fuel cell trams
- Each roof top mounted system is powered by two FCveloCity[®]-XD fuel cell modules
 - Robust design is weight and noised optimized, with easy service access and built-in fire suppression systems
- Six onboard hydrogen cylinders provide a range of 125 kilometers between refueling
- Maximum speed of 70 kilometers/hour
- Tram line began service in December 2019
 - Has operated >7,400 hours and>73,000 kilometers as of Aug 2020

BALLARD Case Study: Siemens Rail Module Development

- Multi year agreement to develop a fuel cell system for Siemens Mireo[®] regional commuter train
- Roof top mounted system that leverages Ballard's FCmove[™] module with optimized weight and footprint for maximum range
- Prototype module expected to be delivered in September 2021
- Achievements:
 - Freeze start from -25 °C
 - Peak efficiency >55%
 - Peak power >200 kW
 - Incorporates rail standards
 - Incorporates Ballard's long life FCgen[®]-LCS fuel cell stack technology and advanced balance of plant
- Siemens is offering Mireo[®] fuel cell powered trains to customers


8

Case Study: Sierra Northern Rail Switching Locomotive

- Sierra Northern Rail will build and deploy a hydrogen-powered switching locomotive, working with Railpower Tech, Optifuel and Ballard
- The fuel cells will work with battery technology to power the locomotive's electric traction motors

BALLARD

- Two 100-kilowatt fuel cell modules will deliver 200kW of electricity to power the locomotive
- Switching locomotives have been identified as the largest contributors to emissions in rail by CARB

Case Study: CP Hydrogen Locomotive Program

- CP will develop North America's first hydrogenpowered line-haul freight locomotive by retrofitting a formerly diesel-powered locomotive with Ballard hydrogen fuel cells
- The fuel cells will work with battery technology to power the locomotive's electric traction motors
- Six 200-kilowatt fuel cell modules will deliver 1.2 MW of electricity to power the locomotive
- Nearly the entire freight locomotive fleet of all railway operators in North America consists of diesel-powered units, representing the industry's most significant source of greenhouse gas emissions

Buses powered by Ballard

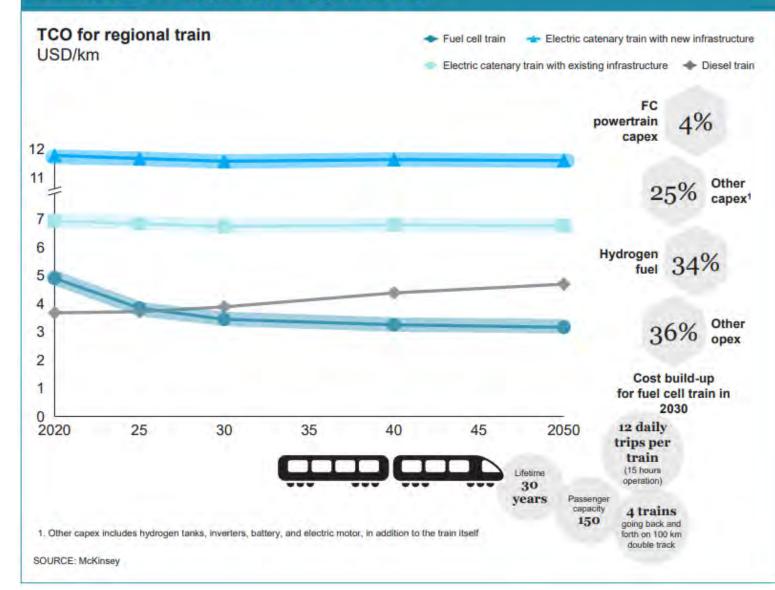
- Over 1,000+ buses deployed are powered by Ballard
- Multiple bus platforms with OEMs in Europe, US and China
- Over 25 million kilometers in service
- > 30,000 hours fuel cell stack life demonstrated

Trucks powered by Ballard

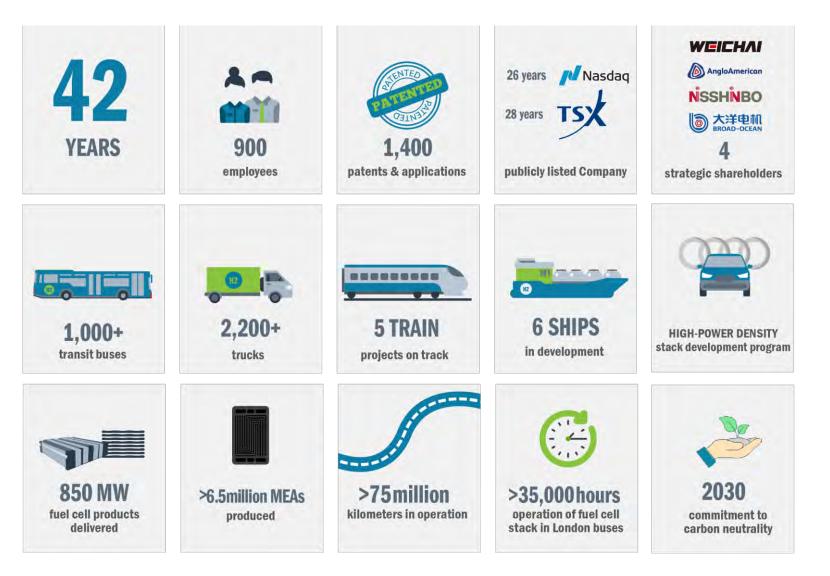
- Over 2,200 urban delivery trucks
 (3 to 9 tons) in service in China
- Class 8 demonstration truck at Port of Long Beach
- UPS class 7 trucks for California
- 60t truck demonstration project Alberta
- Refuse trucks in Europe
- Mining trucks in China and South Africa

Ballard Marine Projects in Europe

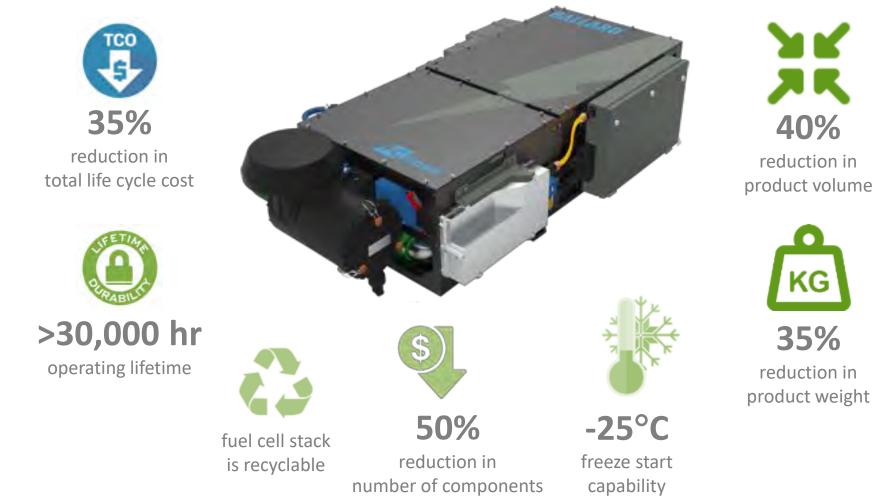
- Megawatt scale systems for cruise ships with ABB
- HySeas III, the world's first sea-going renewables-powered ferry
- Hjelmeland ferry in Norway
- FLAGSHIPS project to power:
 - Norled ferry in Norway
 - River barge in France (ABB)
- ELEKTRA fuel cell river barges in Germany



Cost effective route electrification


"The hydrogen train is already more competitive than electric catenary for a use case with relatively long distance and low frequency."

Hydrogen Council, 2020


Exhibit 23 | TCO trajectory of regional trains

BALLARD Ballard by the Numbers

FCmove[™] BALLARD 8th generation fuel cell power module

40% reduction in

35%

reduction in product weight

Introducing

The future of zero-emission marine vessels

BALLARD FCwave[™] Modular Installation Layout

Thank you

Please contact Ballard for more information
Tim.Sasseen@ballard.com
www.ballard.com

Power to Change the World®

BALLARD

Hydrogen is most competitive in heavy duty motive applications

Our focus is on applications where hydrogen fuel cells have a clear advantage

Fuel cell technology is needed to decarbonize the heavy duty transportation sector

Addressing the cost reduction challenge:

Ballard's road map to 70% cost reduction

Strategic industrial partnerships

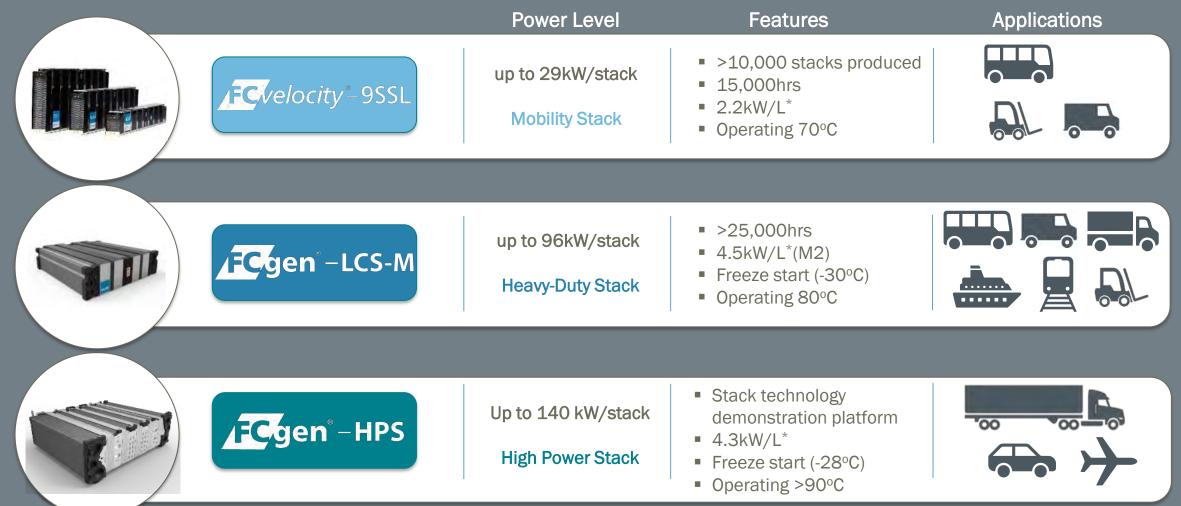
will accelerate fuel cell industrialization and integration

Supply chain

partnership with Mahle will increase access to the automotive supply chain

Ballard's cost reduction initiatives

include 6x increase in manufacturing capabilities through continuous manufacturing automation



Recycling/refurbishments

will increase lifecycle and improve FCEV residual value

BALLARD

Today we have three platforms of liquid cooled stacks to address mobility applications

BALLARD

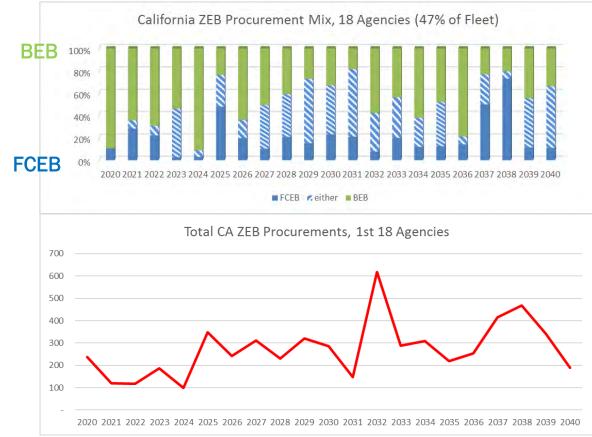
HyZET Hydrogen -Powered Tug Design Study

- CEC funded project with Ballard, ABB, DNV-GL, Crowley/Jensen, Chart Industries
- 90' Tug with 5MW propulsion,
 1.2MW fuel cell + 800kWh battery
- Liquid hydrogen fuel
- Design to assess optimal drive configuration, leading to a readyfor-manufacture design

BALLARD Ballard's current fuel cell module offering for HD mobility

BALLARD

25



Innovative Clean Transit (ICT) Regulation

December 14, 2018

Data collected from CARB published ICT roll out plans

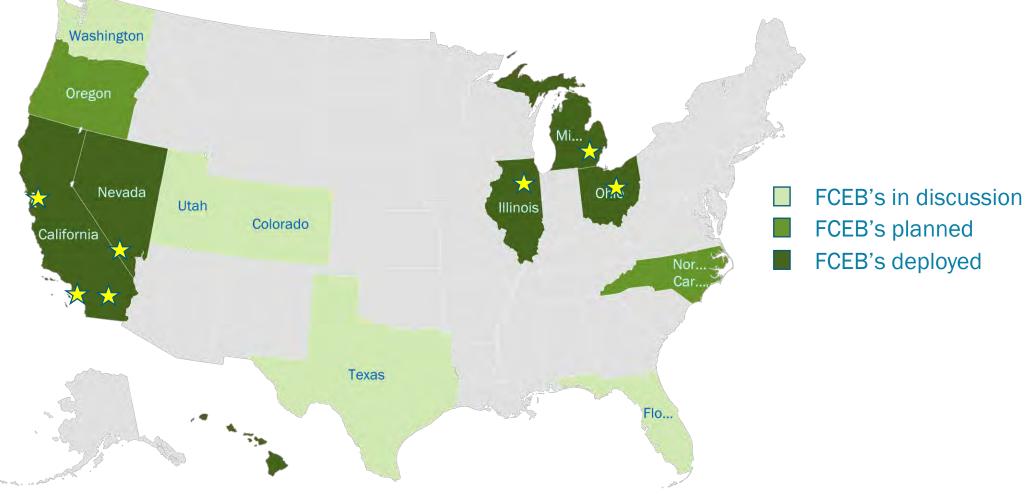
As Result of ICT Planning, there is Growing Demand for FCEBs

First 18 ICT plans approved by CA transit agencies as of Jan 2021 shows that:

- 24% of all ZEBs deployed will be fuel cell electric buses
- 46% will be battery electric
- 30% will be decided by performance

This represents an opportunity for 2,800 to 6,500 fuel cell electric buses in service, or 71 to 163 tons per day of renewable hydrogen consumption

BALLARD


Trains powered by Ballard

- Light rail systems in China
 - with OEM partner CRRC (Goaming, China)
 - light rail in passenger service since January 2020
- Development project underway with Siemens for hydrogen EMU (MIREO)
- Hydroflex retrofit project in UK with EMU Porterbrook
- Scottish Rail project UK EMU retrofit
- North America's first hydrogen-powered line-haul freight locomotive
- Sierra Northern Railway switching locomotive

Fuel Cell Electric Buses are Spreading Across US

Powered by Bing © DSAT for MSFT, GeoNames, TomTom

Fuel cell system generates power onboard the bus

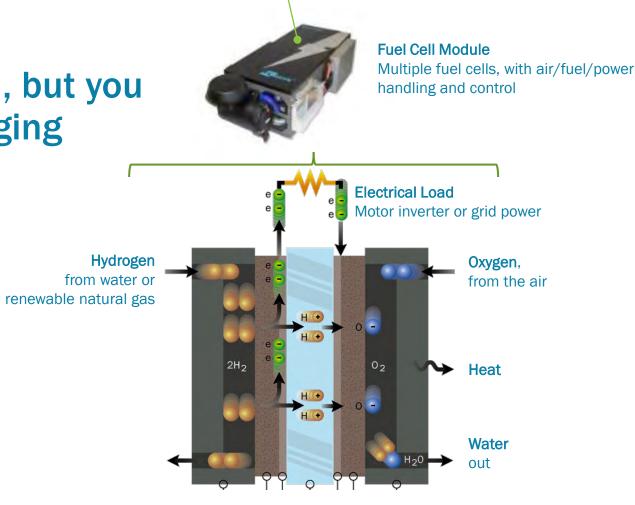
Fuel Cell

Fuel cell power modules provide 30kW - 100kW of DC power for the transit bus powertrain

Generate electricity from air and hydrogen to recharge batteries and power the electric drive

Ballard has produced over 1,500 power modules for buses and trucks

BALLARD



A fuel cell acts like a battery cell, but you feed it hydrogen instead of charging

Each fuel cell power module provides 30kW - 200kW of DC power for the powertrain

Generates electricity from air and hydrogen to recharge batteries and power the electric drive

Ballard has produced over **1,500 power modules** for buses and trucks

NEXT UP:

Carrie Schindler Director of Transit and Rail San Bernardino County Transportation Authority

NEXT UP:

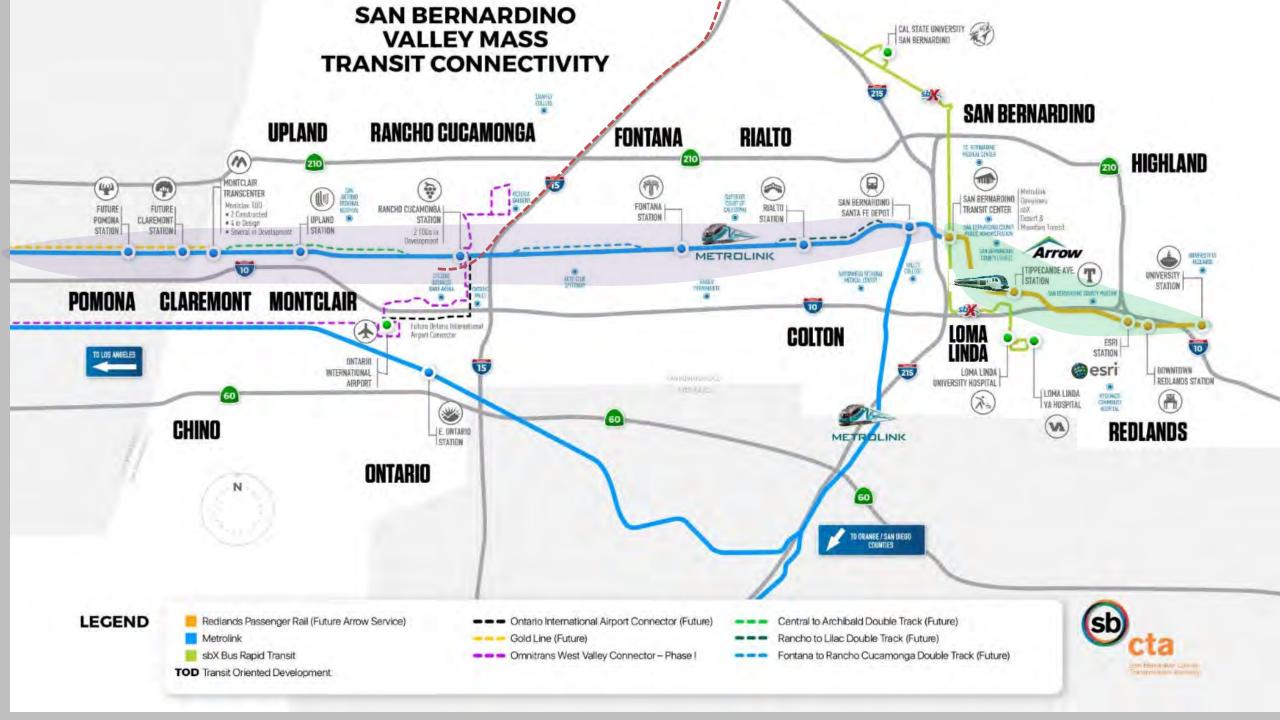
Carrie Schindler Director of Transit and Rail San Bernardino County Transportation

PLAN. BUILD. MOVE. sb

Carrie Schindler, PE Director of Transit & Rail

San Bernardino County Transportation Authority

METROLINK


Arrow

Redlands Passenger Rail / Arrow

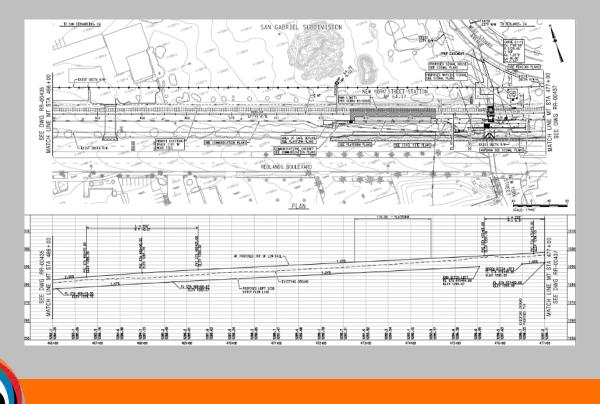
South Coast

Regulatory Agency Federal Railroad Administration

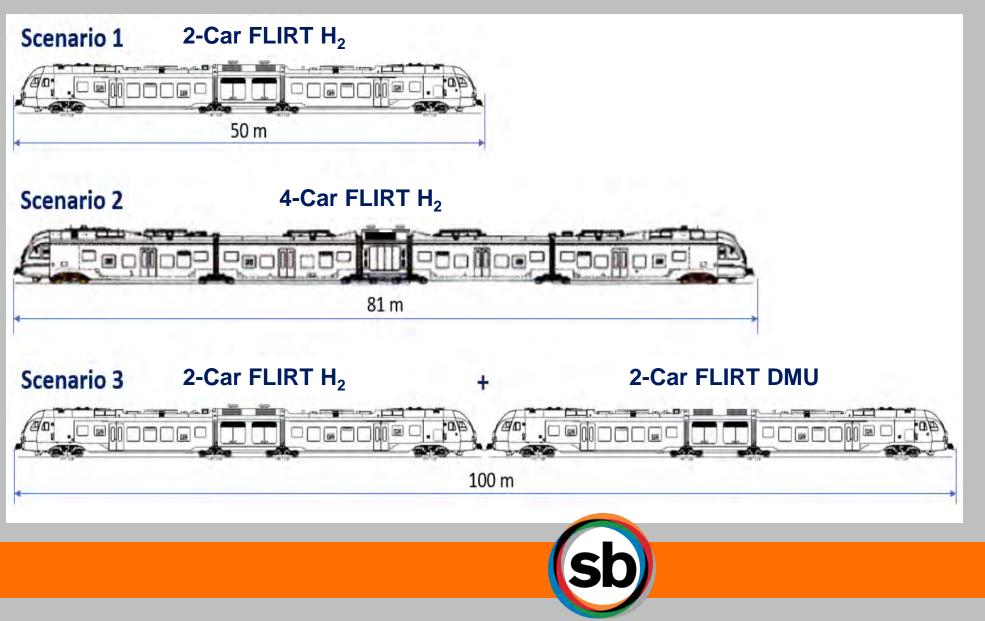
Railroad of Record Southern California Regional Rail Authority

Development Partner U.S. Department of Energy

Regulatory Agency South Coast Air Quality Management District


Performance and Energy Usage Modeling

Primary inputs


- Vehicle characteristics (mass, loading condition, tractive & braking curves, rotating inertia, electrical efficiencies and auxiliary loads)
- Track characteristics (distances, grades, curves, speed limits and restrictions)

Applications

- Quantify key requirements power charge/discharge rates and energy storage capacity
- Assess technology feasibility

Energy Usage & Modeling Scenarios

Journey (Round Trip)	Section Length (Miles)	Energy Between Terminals							
		Scenario 1 2-Car ZEMU		Scenario 2 4-Car ZEMU		Scenario 3 2-Car + 2-Car			
		No Regen. Braking (kWh)	With Regen. Braking (kWh)	No Regen. Braking (kWh)	With Regen. Braking (kWh)	No Regen. Braking (kWh)	With Regen. Braking (kWh)		
Redlands - SBTC	17.8	236	173	338	254	339	216		
SBTC - LA	115.2	1492	1169	1916	1497	2083	1579		
Redlands – LA	133.0	1728	1342	2254	1750	2422	1794		

Selection of Preferred Technology

Capital, Operations & Maintenance

FRA, NFPA, CPUC

Infrastructure (10%)

Cost (20%)

Environmental (15%)

Operations (25%)

Land use, GHGs, Aesthetics, Noise, Socio-Economic

Range, Scalability, Reliability, Operations, Life Span

Right-of-Way, Charging & Fueling, Utilities

Regulatory Compliance (10%)

Implementation Schedule (10%)

Risk Analysis (10%)

Timeline for Planning, Design, Construction phases

(10%) 🦲 Identify

Y

Identify and document risks for further analysis

High Level Pre-Screening

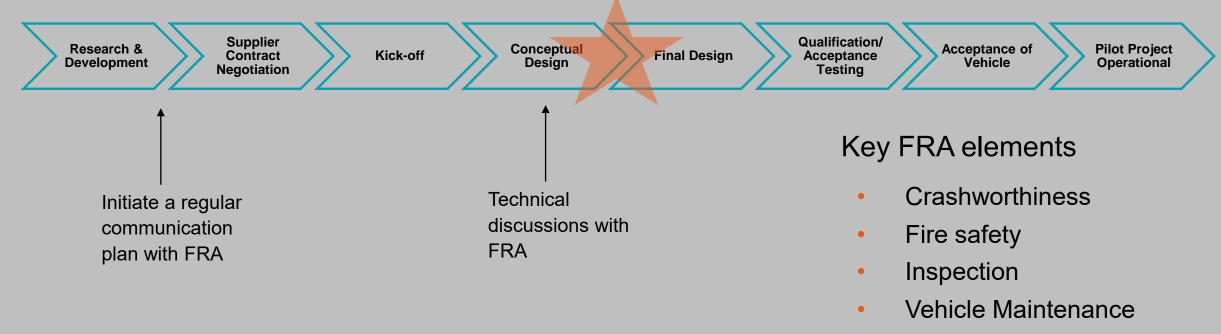
Category	Baseline – Arrow DMU	Wayside Po	wer Supply	On-Board Energy Storage System			Hybrid System					
Rail Technology	Diesel	Overhead Contact System (OCS)	Ground Level Power Supply – Third Rail	Battery	Supercapacitor	Hydrogen Fuel Cell	Biofuel	Natural Gas	Hydrogen Fuel Cell + Battery	Diesel + Battery	Biofuel + Battery	Natural Gas + Battery
Relative Capital Costs	Good	Poor	Poor	Moderate	Moderate	Moderate/ Poor	Good	Good/ Moderate	Moderate/ Poor	Good	Good/ Moderate	Moderate
Relation Life Cycle Cost	Moderate/ Poor	Good/ Moderate	Good/ Moderate	Moderate	Good/ Moderate	Moderate	Moderate/ Poor	Good/ Moderate	Moderate	Moderate	Moderate	Moderate
GHG Emissions	Poor	Good	Good	Good	Good	Good	Moderate/ Poor	Moderate	Good	Poor	Moderate	Good/ Moderate
Aesthetics	Good	Poor	Moderate	Good	Good	Good	Good	Good	Good	Good	Good	Good
Range	Good	Good	Good	Moderate	Poor	Good	Good	Good	Good	Good	Good	Good
Scalability	Good	Poor	Poor	Moderate	Moderate	Good	Good	Good	Good	Good	Good	Good
Life Span	Good	Good	Good	Poor	Moderate	Moderate	Good	Good	Moderate	Moderate	Moderate	Moderate
Regulatory Compliance	Good	Moderate	Poor	Moderate	Moderate	Moderate	Good	Moderate	Moderate	Moderate/ Good	Moderate/ Good	Moderate
Result	Baseline	Incompatible	Incompatible	Compatible	Compatible		Incompatible	Incompatible	Compatible	Incompatible	Incompatible	Incompatible

2-Car Vehicle Characteristics

Powertrain Configuratio n	HFC Hybrid
Mass (tonnes)	132
Max. Power at Wheels (kW)	700
Powerplant Power (kW)	300
Average Duty Cycle Powerplant Efficiency (%)	49
Battery Power (kW)	828
Battery Capacity (kWh)	138
Battery Charging Efficiency (%)	86

Powertrain Type	HFC Hybrid						
Fuel Cell System							
Power (kW)	300						
Mass (kg)	825						
Volume (m ³)	1.5						
Hydrogen Tanks							
Pressure (bar)	350						
Hydrogen stored (kg)	220						
Mass of tanks and hydrogen (kg)	3,150						
Volume (m ³)	16.5						
Battery System							
Mass (kg)	4,000						
Volume (m ³)	4						
Total							
Mass (kg)	7,975						
Volume (m ³)	22						

Mass & Volume of Powertrain Types for 16 hour Service Day


> 22 (sb)

- Runtime performance will be equivalent to the DMU
 - Required hydrogen storage
 and powertrain components
 could be installed on 2-car
 vehicle with potentially only
 daily refueling

	BA	TTERY	HYDROGEN FUEL CELL HYBRID				
	TRACTION POWER SUBSTATION (TPSS)	WAYSIDE ENERGY STORAGE SYSTEM (WESS)	HYDROGEN DELIVERY	ON-SITE STEAM METHANE REFORMING		ON-SITE CTROLYSIS	
CAPITAL COST (TO PURCHASE ONE NEW ZEMU VEHICLE)	\$29 M	\$31 M	\$33 M	\$33.8 M	\$34	4.6 M	
ANNUAL O&M COST (TO OPERATE FULL ZEMU ARROW SERVICE 2 VEHICLES)	\$769 K	\$690 K	\$1.2 M	\$540 K	\$856 K		
EMISSIONS REDUCTION (PERCENTAGE IN COMPARISON TO DMU BENCHMARK)*	60% ↓ 75% ↓ 98% ↓ 97% ↓ 93% ↓ 90% ↓ CA GRID MIX	57% ↓ 100% ↓ 100% ↓ 100% ↓ 100% ↓ 100% ↓	.45% ↓ 25% ↓ 96% ↓ 93% ↓ 90% ↓ 82% ↓	21% ↓ 37% ↓ %6% ↓ %5% ↓ %5% ↓ 79% ↓	-24% ♠ 25% ♦ 95% ♦ 89% ♦ 79% ♦ 71% ♦ CA GRID MIX	55% ↓ 100% ↓ 100% ↓ 100% ↓ 100% ↓ 100% ↓	

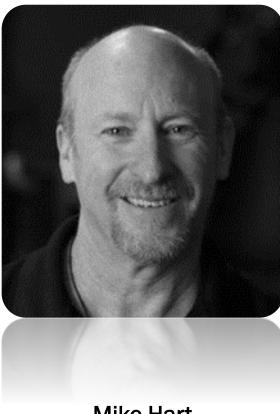
June 2019

Record keeping

Key areas of research needs:

- Life cycle costs as compared to other alternative fuels
- Hydrogen storage ways to increase capacity and flexibility
- Cost reduction regarding renewable hydrogen
- Maintenance facility design best practices for building facilities of the future
- Component durability and impact resistance (e.g. FRA testing of an LNG tender car)

Plan. Build. Move.


www.goSBCTA.com 909.884.8276

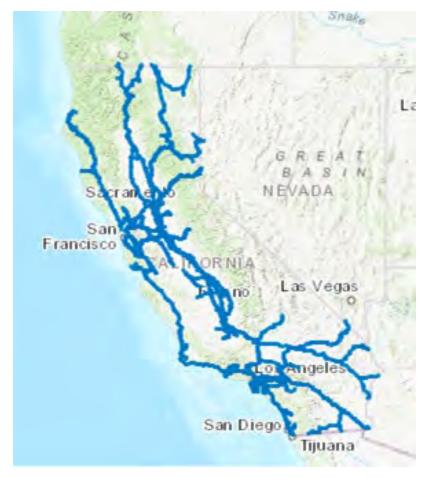
The second second

f D O w

sb

NEXT UP:

Mike Hart CEO Sierra Railroad / Sierra Energy



Advancing Hydrogen Rail in California

Sierra Northern Railway and California Rail

- Sierra Northern Railway (SNR) operates 160+ miles of track in California and owns 37 switcher locomotives
- There are 260 Switcher locomotives operating in California
- More than 500 long-haul locomotives operate in the State

Map of California Rail Lines

\$8 Million for H2Rails Demonstration

The California Energy Commission has awarded \$8 million to build and test H2 locomotive and multi-modal fueling station

- \$4M for SNR to design and build a H2 locomotive demonstrating integration of advanced H2 fuel cell, H2 storage, advanced battery, and systems control technologies
- **\$4M for Shell** to develop a multi-purpose H2 fueling station to support locomotives and on-road vehicles, including high-flow H2 dispensing equipment and fueling protocol
- **Project partner, Shell**, commits to building first H2 fueling facility for rail use to be built at the Port of West Sacramento.

Hydrogen Rail Technology

Sierra Northern, is converting a diesel locomotive with a zero-emissions H2 locomotive

Low Risk Program to Covert from Diesel Power to Zero-Emission Hydrogen Power

Union Pacific Railway RP20BD

Now a Sierra Northern Zero-Emission Hydrogen Powered RP20BH Ready for Service

Repowered with 200 kW Fuels Cells, 222 kg Hydrogen Storage, and 500 kW-hr Battery Storage Installed

H2 locomotives have greater energy efficiency (1.8x) and lower long-term maintenance costs (25%) compared to diesel locomotives

- H2 prices are relatively stable vs. diesel costs fluctuate based on economic conditions
- 2,550 MT CO2 displaced per locomotive over lifetime, in addition to air pollution reductions

Strategic Partners with Sierra Northen Railway

hydrogen

California Energy Commission grant funding for H2 Locomotive Project

Partner	Role	Partner	Role		
GAS TÉCHHOLOGY INSTITUTE	Formal applicant to California Energy Commission & Hydrogen safety plan and design review		Demonstration site owner and operator. Construction and testing of locomotive. Commercialize of		
RAILPOWER	Locomotive controls/electronics		locomotive technology.		
Technologies Corp.	design. Locomotive design and analysis. System integrator.	OptiFuel Systems	Manufacture of locomotive modules. Analysis and integration.		
BALLARD®	Manufacture of fuel cell technology	UCDAVIS UNIVERSITY OF CALIFORNIA	Operational analysis of the demonstration locomotive		
SocalGas Airage	Funding Partners and Technical Advisory Committee Members	SHELL	Fueling station for H2 locomotive		
SIERRA	Future: Gasification technology to convert waste into renewable	Walley vision	Provide analysis of impacts and out to disadvantage community surrounding Port of West		

surrounding Port of West

Sacramento.

Environmental Justice and Carbon Benefits

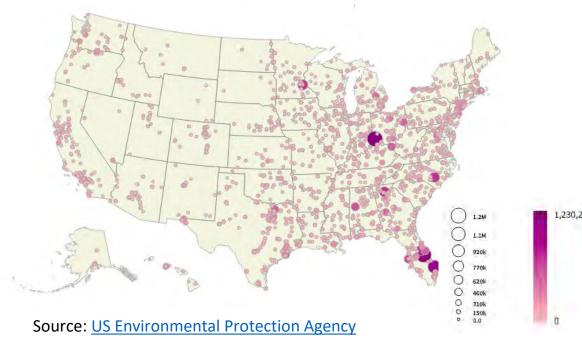
Zero-emission H2 locomotives provide meaningful health and carbon benefits

- Significant decrease in criteria pollutants contributing to air pollution from displacing diesel
- Noise reduction due to H2 locomotives emitting zero noise or vibration from power generation

Emissions Displaced with Zero-Emission Locomotive	PM 10	HC	NOx	СО	CO2
Annual Savings (lbs)	147	338	4,222	613	225,000
Lifetime Savings (lbs)*	1,031	2,356	29,530	4,288	1,574,229

* An estimated useful fuel cell locomotive life of 25 years.

Sierra Railway Corporation is the only company in the world with a short line railroad and a gasification technology


- <u>2018</u>: Sierra Energy successfully commissions Fort Hunter Liggett project, in partnership with Department of Defense and the U.S. Army, for a 10 ton-per-day system.
- <u>2019</u>: Breakthrough Energy Ventures, Cox, BNP Paribas, Twynam, Formica, and the March Fund lead oversubscribed \$38M Series A round in **Sierra Energy.**
- <u>2021</u>: Sierra Northern Railway, receives alongside partners, \$8M from the California Energy Commission for locomotive conversion to hydrogen fueling.

Opportunities beyond California: National Scale

Waste and railroad decarbonization problems that exist nationwide

- Waste sector contributes 110.3M tons CO2e annually
- All short line railroads would benefit from federal incentives to reduce emissions and waste tie disposal issue

Location and Emissions for Waste Sector Facilities (MT CO2e)

Low-Cost Hydrogen Fuel Solves Multiple Problems

"Negative-emissions hydrogen" has a structural cost advantage relating to feedstock supply and is poised to meet expanding hydrogen fuel demand

Major cost advantage driven by use of waste materials as feedstock

56M annual tons of biomass waste in CA with landfill reduction goals + increasing waste tipping fees = continuously improving project economics.

Structurally increasing demand for clean hydrogen as fuel

CA's statutory goals to build the H2 fuel economy ensure growing demand for FCEVs. CARB can achieve rail decarbonization through H2 locomotive conversion.

Gasification can solve multiple environmental problems in California

Universal win for CA with sector strategies for waste, H2 supply, and rail decarbonization — reducing carbon emissions and air pollution, particularly in fence line communities.

Hydrogen Fuel

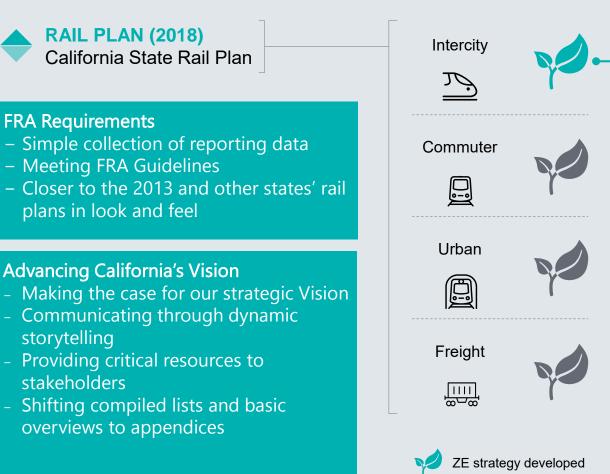
Sierra Northern Railway Advancing Hydrogen Rail in California

NEXT UP:

Momoko Tamaoki Office Chief, Equipment and Assets Caltrans

Caltrans Intercity Passenger Rail ZE Strategy Innovations in Hydrogen Rail

Sacramento, CA | May 19, 2021| Momoko Tamaoki | Office Chief, Assets and Equipment, DRMT, Caltrans momoko.tamaoki@dot.ca.gov



Become an innovation leader in zero-emission mobility Contributing to a livable environment.

Caltrans is following the State Rail Plan to develop a comprehensive ZE strategy – starting with Intercity, other segments will follow

State Rail Plan requirements and objectives

Caltrans Intercity ZE strategy

- Provide leadership and guidance and serve as a positive benchmark for other railways to act quickly in a coordinated manner
- ✓ Enable the launch of important initiatives and accelerate the progress
- ✓ Set goals / targets and provide a structured approach to move towards ZE, incl. setting technological cornerstones
- Respond to urgent need and legislation / state mandates

Strategic goals for our intercity fleet to become an innovation leader in zero-emission mobility

Decarbonizing our transportation system and improving our air quality

- Gradually substitute fossil fuel with renewable diesel and hydrogen, thereby reducing GHG emissions well-to-wheel
- Upgrade our diesel locomotives with after-treatment systems and introduce hydrogen, thereby progressively decreasing criteria pollutants that have an adverse effect on air quality

Increasing our energy efficiency

- Invest in technology and procedures to enable energy-efficient driving as well as regenerative braking
- Invest in ground power for expanded use at layover facilities
- Invest in energy efficient railcars, reducing HEP¹ requirements

Fostering leadership and facilitating collaboration in sustainable mobility

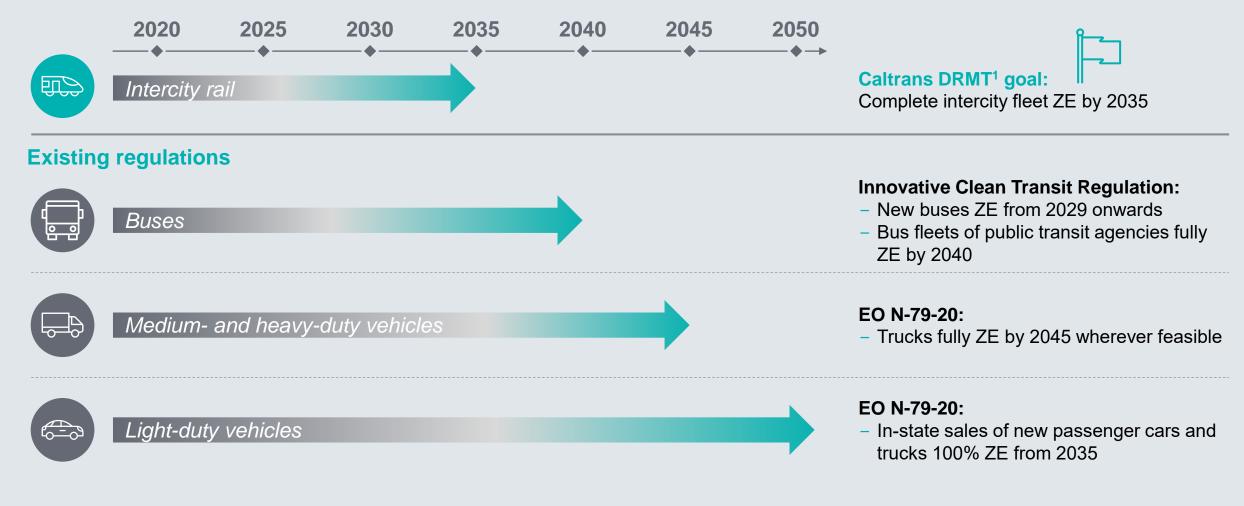
- Lead and promote pioneering initiatives in zero-emission vehicles
- Integrate state-wide efforts to accelerate implementation
- Engage in public outreach and promote the benefits of rail

CALIFORNIA FLEET MANAGEMENT PROGRAM

Reduce GHG and criteria pollutants by 2035

-100%

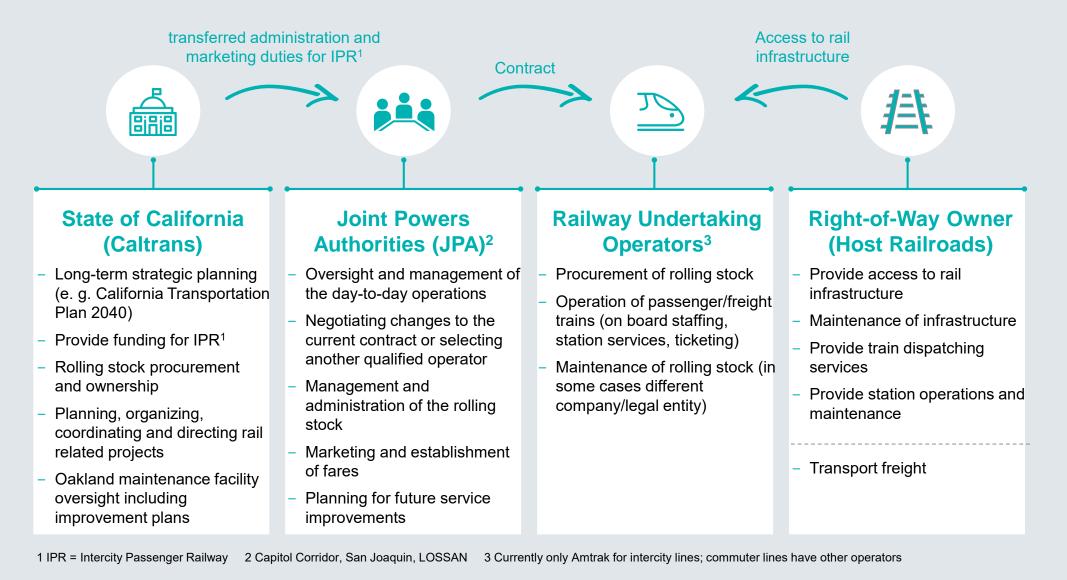
Reduce fuel usage per train mile by 2025


-15%

Work with passenger rail agencies to coordinate zeroemission action plan

by 2021

Our goal for intercity rail: Achieve a 100% emission-free fleet by 2035 – taking the lead among other modes of transportation



(1) DRMT = Division of Rail and Mass Transit Sources: CARB, Caltrans, Governor's Office

Caltrans DRMT ZE Initiatives | April 2021

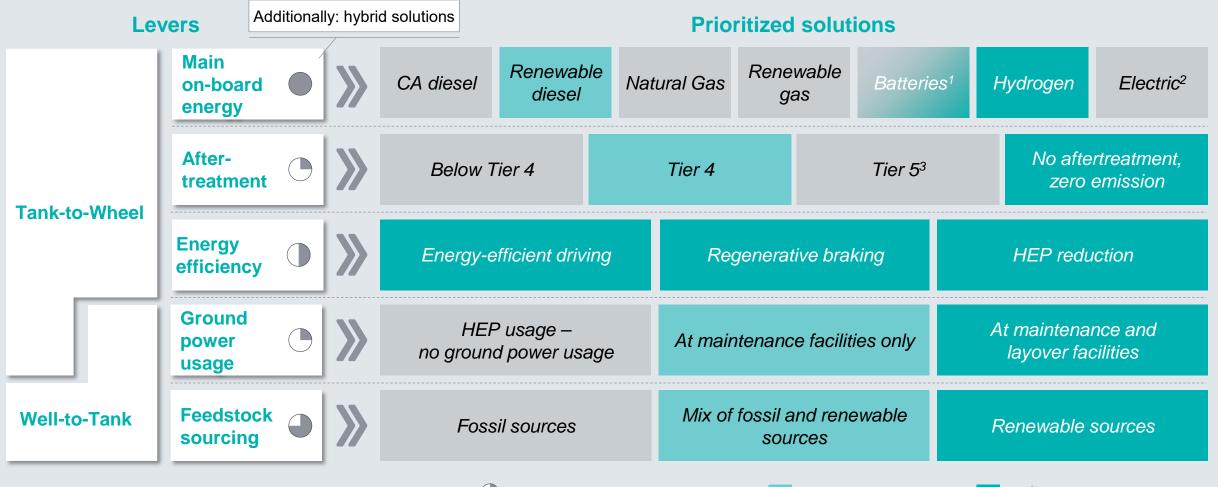
Responsibilities for California's intercity rail are divided between state, JPAs and railway undertaking operators

Our fleet: Caltrans provides the equipment for three intercity corridors – services are managed by regional Joint Powers Authorities

Intercity diesel-electric locomotive fleet

F59PHI (EMD)

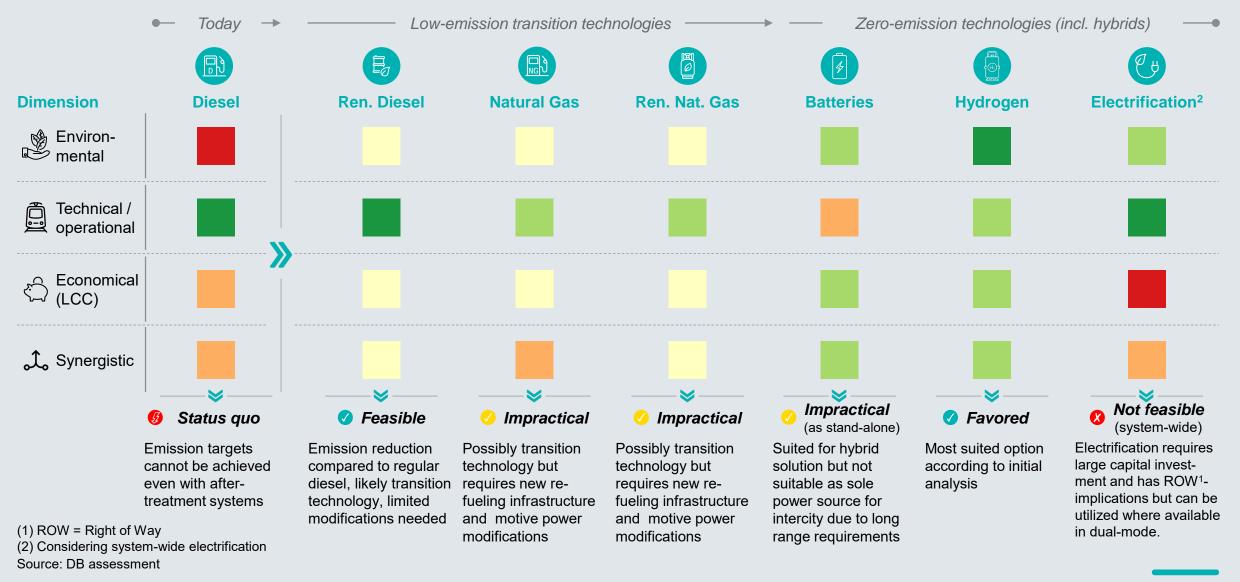
Year introduced: 1991 / 2001 Emission standard: Tier 2 Active fleet: 13


Focus of our zero-emission (ZE) strategy

SC-44 (SIEMENS)

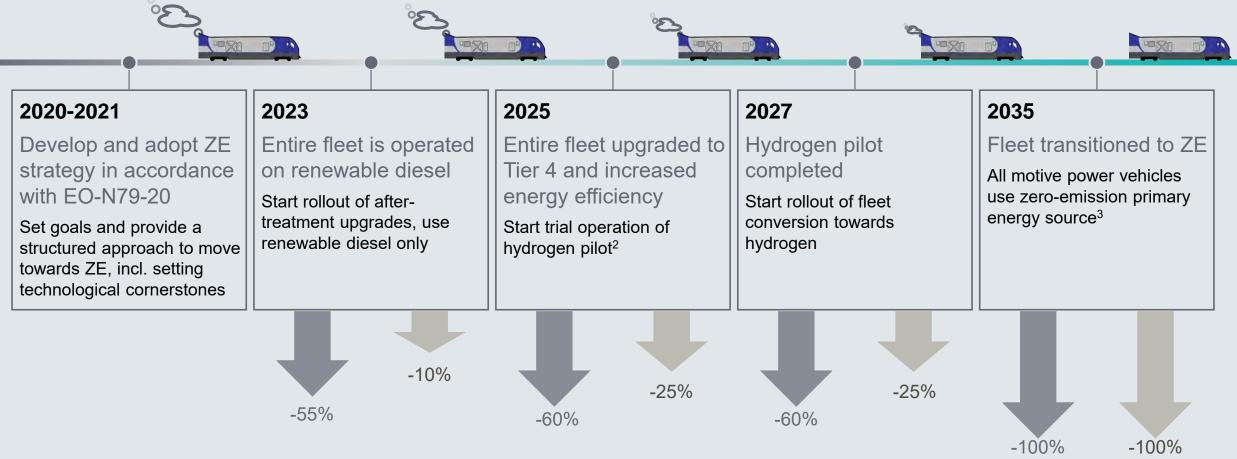
Year introduced: 2017 Emission standard: Tier 4 Active fleet: 24 Targets will be achieved through a mix of measures: reducing energy consumption combined with technological changes and use of renewable power

Total emission reduction potential Intermediate solution


Preferred long-term solution

(1) As hybrid with Hydrogen (2) Power supplied by complete continuous wayside electrification (3) No dedicated investment in Tier 5 but transition to ZE immediately

Caltrans DRMT ZE Initiatives | April 2021


Primary power for Caltrans intercity fleet: renewable diesel to reduce emission and hydrogen to achieve zero-emission

Driving toward zero-emission intercity rail: Start with renewable diesel, followed by after-treatment upgrade incl. energy efficiency, and Hydrail¹

Emission reduction per train mile compared to 2020 levels: - GHG - Criteria pollutants

(1) Adjustment of strategy possible, if technological breakthrough occurs (2) Retrofitting existing F59 locomotive with H₂ powertrain – if successful, consideration of rollout to remaining fleet (3) Currently, hydrogen-hybrid (hydrail) is the best option, suplemented with dual-mode where feasible

Caltrans DRMT ZE Initiatives | April 2021

THANK OU! ANY QUESTIONS?

Q&A

Submit your question in the Q&A Panel on your right.

Cory Shumaker Development Specialist California Hydrogen Business Council Lynn Harris Senior Consultant -Sustainable Motive Power & Zero-Emission Technologies DB Engineering and Consulting USA

Tim Sasseen Market Development Manager, US Ballard Power Systems Carrie Schindler Director of Transit and Rail San Bernardino County Transportation Authority Mike Hart CEO Sierra Railroad / Sierra Energy

Momoko Tamaoki Office Chief, Equipment and Assets Caltrans

BRIEFING SERIES TITLE SPONSOR

PROGRAM SPONSORS

CONTACT

FOLLOW US

Cory Shumaker

Development Specialist

California Hydrogen Business Council

cshumaker@californiahydrogen.org

LinkedIn: https://www.linkedin.com/company/californiahydrogen-business-council

Twitter: <u>https://twitter.com/CAHydrogen</u>

CHBC Mailing List: <u>https://www.californiahydrogen.org/</u> - "Subscribe Now!"